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ABSTRACT 

 It is well known that all types of differential equations have wide range of applications in many areas. there is special type for differential 

equations that play important different theories of mechanical and electrical systems such by renaming the variables, this analogy has an 

important application the second order nonlinear differential equations with variables coefficients is of special interest, in this work we consider 

and give some sufficient conditions for oscillation of solutions of some types of neutral delay differential equations. and we made connection 

between oscillations and bondedness of the solution of the first order neutral delay differential equation of this form: 

 
Where we will prove any oscillation solution of a differential equation is always bounded and the converse is not true.  And we use MATLAB 

software to solve examples on the previous equation.  

 

 الخلاصة 

ه في  تم  البحث  ذلقد  المعادل   ةومحدودي  ذبذب ت  دراسة ا  انواع  لبعض  ايجاد    المحايد.ر  التأخي  تذاة  التفاضليت  الحلول  الت  علاقةوحاولنا   ذبذب بين 

 ة:ر الولى التي على الصو  ةتبر من ال المحايد رالتأخيت ذا ةالتفاضلي تحلول المعادل  ةومحدودي

. 

  وقدمنا بعض تفاضلية يكون دائمًا محدودًا، والعكس ليس صحيحًا.المعادلة لأي حل تذبذبي ل حيث أثبتنا أن 

 محدودة. امثلة التي أستخدمنا برنامج الماتلاب لأثبات انها 
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section1: Introduction. 

The delay equation is a differential equation in which the unknown function appears with delay.  

A neutral delay differential equation (NDDE) is a differential equation in which the higher order derivative of the unknown function appears in 

the equation both with and without delays.  

Example (1.1): The equation         

where  

 is an example of first order neutral delay  

A point   is called a zero of the solution  if  

The equation is called oscillatory if it has arbitrarily large zeros and called non-oscillatory if it is eventually positive or eventually negative.  

The equation is oscillatory if every solution is oscillatory  

Example (1.2): Consider the equation:  

 
whose solution y(t)=   has an infinite sequence of multiple zeros.  

This solution has an oscillatory property.   

Example (1.3): Consider the equation:  

. 

This equation has an oscillatory solution    and a non-oscillatory solution   . Then it is called non- oscillatory.  

Section2: Oscillation of natural delay differential equation.  

In this section we shall study the oscillatory behavior of all solutions of neutral delay differential equations with variable coefficient and we shall 

establish and prove some results.  

 Theorem (2.1): [14] Consider the NDDE 

(𝑥(𝑡) + 𝑝𝑥(𝑡 − 𝜏)) − 𝑞(𝑡)𝑥(𝑡 + 𝜎) = 0, 𝑡 ≥ 𝑡0……….. (2.1) 

Where p,  and   , and q (t)  is periodic with period   or non-decreasing function on  

and satisfies the condition.  

𝑙𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑞(𝑠)𝑑𝑠 >
1+𝑝

𝑒

𝑡

𝑡−𝜎
………. (2.2) 

Then every solution of the equation (2.1) oscillates.  

Example (2.2): [14] Consider the NDDE 

(𝑥(𝑡) + 𝑥(𝑡 − 𝜏))̇ − 𝑥(𝑡 +
𝜋

2
) = 0, 𝜏 ∈ (0, ∞), 𝑡 ≥ 0 

We note that          

𝑝 = 1, 𝜏 ∈ (0, ∞), 𝜎 =
𝜋

2
 𝑎𝑛𝑑 𝑞(𝑡) = 1. 

Then we have  
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1. 𝑝, 𝜏and 𝜎 ∈ (0, ∞).    

2. 𝑞(𝑡) ∈ 𝑐[[𝑡0, ∞), ℝ+] is periodic with period   or non-decreasing   on [𝑡0, ∞) and   

𝑙𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑡−
𝜋

2

= lim
𝑡→∞

𝑖𝑛𝑓
𝜋

2
=

𝜋

2
>

2

𝑒
 . 

It follows from Theorem (2.1) that every solution of the given equation is oscillatory. Hence the given equation is oscillatory.  

Theorem (2.3): [10] Consider the NDDE (2.1) were  

1. 𝑝, 𝜏and 𝜎 ∈ (0, ∞).    

2. 𝑞(𝑡) ∈ 𝑐[[𝑡0, ∞), ℝ+] and satisfies the condition. 

𝑙𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 ∫
𝑞2(𝑠)

𝑞(𝑠)+𝑝𝑞(𝑠−𝜏)
𝑑𝑠

𝑡

𝑡−(𝜎−𝜏)
>

1

𝑒
 ……………..(2.3) 

 

Then every solution of the equation (2.1) oscillates. 

 Example (2.4): [10] Consider the NDDE 

 

We note that   

then we have   

(1) p,  and     

(2) q(t)    

and   

 

 

 
It follows from Theorem (2.3) that every solution of the given equation is oscillatory. Hence the given equation is oscillatory.  

 Theorem (2.5): [10] Consider the NDDE 

((𝑡) + 𝑝𝑥(𝑡 − 𝜏))̇ − (𝑡)𝑥(𝑡 − 𝜎) = 0,   𝑡 ≥ 𝑡0   …………….(2.4) 

 Where  

(1) p ,  and    and   

(2) q(t)  is non-increasing on  and satisfies that   

𝑙𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑞(𝑠 + 𝜏)𝑑𝑠
𝑡

𝑡−(𝜎−𝜏)
>

1+𝑝

𝑒
  ………….(2.5) 

Then every solution of the equation (2.4) oscillates. Hence the NDDE (2.4) is oscillatory.  

Example (2.6): [10] Consider the NDDE  
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We note that   

 
Then we have   

(1) p ,  and   with    

(2) q(t)  is non- decreasing on   

and   

 

It follows from Theorem (2.5) that every solution of the given equation is oscillatory. Hence the given equation is oscillatory.  

 Theorem (2.7): [10] Consider the NDDE (2.4) where 

(1) p ,  and    and    

(2) q(t)  is periodic with period   and satisfies that   

 
Then every solution of the equation (2.4) oscillates. And the equation (2.4) is oscillatory.  

 

Section3: The relation between boundedness and oscillatory of first Order Neutral Delay differential equation. 

In this section we will try to find a way to make connection between the concept of boundedness and the oscillatory of the solution of the first 

Order Neutral Delay differential equations of this form 

(𝑥(𝑡) + 𝑎(𝑡)𝑥(𝑡 − 𝜏)) + 𝑝(𝑡)𝑓(𝑥(𝑡 − 𝛼)) + 𝑞(𝑡)𝑔(𝑥(𝑡 − 𝛽)) = 0, 𝑡 ≥ 𝑡0……..(3.1) 

Where ) and , 

Theorem (3.1): Any oscillation solution of a differential equation is always bounded, and the converse is not true.  

Proof: Suppose that  is oscillatory, then it means that has infinite number of Zeros, which that means the solution is alternating through the 

x-axis,  

hence bounded i.e.,   , .and the convers is not true           

because     

𝑦1 = 𝑠𝑖𝑛𝑥 

𝑦2 = 𝑐𝑜𝑠𝑥 

are solutions of    on the interval 0 ≤ 𝑥 ≤ 𝜋  which are bounded not oscillatory.    we see from example the equation is 

bounded but it is not oscillatory. 
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we assume that  and denote the sets of all real numbers and nonnegative numbers, respectively, γ =𝑡0 − max {τ, α, β}, 

𝐶([𝛾, +∞), ℝ) denotes the Banach space of all continuous and bounded functions on [γ, +∞) with norm  

 ‖𝑋‖ = 𝑠𝑢𝑝𝑡≥𝛾|𝑋(𝑡)| for all x ∈ 𝐶([𝛾, +∞), ℝ), 

𝐴(𝑁, 𝑀) = {𝑥 ∈ 𝐶([𝛾, +∞), ℝ: 𝑁 ≤ (𝑡) ≤ 𝑀, 𝑡 ≥ 𝛾} 

where M, N  with M >N.  

Theorem (3.2): [12] Assume that there exist constants 𝑀, 𝑁 < 𝑎0and D satisfying  

1. 𝑚𝑎𝑥{|𝑓(𝑢) − 𝑓(𝑣)|, |𝑔(𝑢) − 𝑔(𝑣)|} ≤ 𝐷|𝑢 − 𝑣|, 𝑢, 𝑣 ∈ [𝑁, 𝑀].   

2. 2∫ 𝑚𝑎𝑥{|𝑝(𝑠)|
+∞

𝑡0
, |𝑞(𝑠)|}𝑑𝑠 < +∞. 

3. 0 ≤ 𝑎(𝑡) ≤ 𝑎0 < 1, 𝑡 ≥ 𝑡0. 

4. 0 < 𝑁 < (1 − 𝑎0)𝑀. 

   

Then equation (3.1) has a bounded non-oscillatory solution in A(M, N)  

 

Example (3.1):  Consider the first order neutral delay neutral delay differential equation:  

𝑑

𝑑𝑡
[𝑥(𝑡) +

2𝑡3

1 + 8𝑡3
𝑥(𝑡 − 𝜏)] +

(𝑡 − 𝑠𝑖𝑛(𝑡2𝑙𝑛(1 + 𝑡2)))𝑥2(𝑡 − 1)

1 + 𝑡8
+

(2 − 𝑡4 − 4𝑡5)𝑥3(𝑡 − 1)

(1 + 𝑡4)2

= 0 ,   𝑡 ≥ 1 

where  is a positive constant. Let   

  𝛾 = 1 − 𝑚𝑎𝑥{1, 3, 𝜏}  

𝑀 = 4, 𝑁 = 1, 𝑎0 =
1

4
 , 𝐷 = 48    and 

𝑎(𝑡) =
2𝑡3

1 + 8𝑡3
 , 𝑝(𝑡) =

(𝑡 − 𝑠𝑖𝑛(𝑡2𝑙𝑛(1 + 𝑡2)))

1 + 𝑡8
, 𝑞(𝑡) =

(2 − 3𝑡4 − 4𝑡5)

(1 + 𝑡4)2
 

𝑓(𝑢) = 𝑢2, 𝑔(𝑢) = 𝑢3, (𝑡, 𝑢) ∈ [𝑡0, +∞) × ℝ. 

1-We choose   and  because they satisfying the conditions of theorem (3.1), and hence we have from the 

same theorem that  

𝑚𝑎𝑥{|𝑓(𝑢) − 𝑓(𝑣)|, |𝑔(𝑢) − 𝑔(𝑣)|} 

= 𝑚𝑎𝑥{|4 − 9|, |8 − 27|} 

= 𝑚𝑥{|−5|, |−19|} 

= 𝑚𝑎𝑥{5,19} 

= 19 < 48|3 − 2| 

19 < 48 

2- ∫ 𝑚𝑎𝑥{|
𝑠−𝑠𝑖𝑛(𝑠2𝑙𝑛(1+𝑠2)))

1+𝑠8 |
+∞

1
, |

(2−3𝑠4−4𝑠5)

(1+𝑠4)2 |}𝑑𝑠 < ∞ 

 MATLAB software is used to solve the previous equation  
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 3-   0 < 𝑎(𝑡) < 𝑎0 < 1  , 𝑡 ≥ 1 

                                         
2𝑡3

1+8𝑡3
<

1

4
< 1 

4- 0 < 1 < (
3

4
)4,  0 < 1 < 3. 

Then the equation has a bounded non-oscillatory solution.  

Theorem (3.3): [12] Assume that there exist constants  and D satisfying  

1. 𝑚𝑎𝑥{|𝑓(𝑢) − 𝑓(𝑣)|, |𝑔(𝑢) − 𝑔(𝑣)|} ≤ 𝐷|𝑢 − 𝑣|, 𝑢, 𝑣 ∈ [𝑁, 𝑀].   

2. ∫ 𝑚𝑎𝑥{|𝑝(𝑠)|
+∞

𝑡0
, |𝑞(𝑠)|}𝑑𝑠 < +∞. 

3. |𝑎(𝑡)| ≤ 𝑎0, 𝑡 ≥ 𝑡0. 

4. 0 < 𝑁 < (1 − 2𝑎0)𝑀, 𝑎0 <
1

2
 

 

Then equation (3.1) has a bounded non-oscillatory solution in   

Example (3.2):  

Consider the first order neutral delay neutral delay differential equation:  

𝑑

𝑑𝑡
[𝑥(𝑡) +

𝑡3𝑐𝑜𝑠𝑡5

1 + 8𝑡3
𝑥(𝑡 − 𝜏)] +

(𝑡 − 𝑐𝑜𝑠𝑥5(𝑡 − 3)

1 + 𝑡3(𝑙𝑛(1 + 𝑡2))
−

(𝑡2 − 𝑡 + 1)𝑠𝑖𝑛3(𝑥2(𝑡 − 4))

1 + 𝑡5(1 + 𝑡2)

= 0 ,   𝑡 ≥ 2 

where  is a positive constant. Let   

𝑀 = 9, 𝑁 = 2, 𝑎0 =
1

3
 , 𝐷 = 30  and 

𝑎(𝑡) =
𝑡3𝑐𝑜𝑠𝑡5

1 + 3𝑡3
 , 𝑝(𝑡) =

(1 + 𝑡)

1 + 𝑡3(𝑙𝑛(1 + 𝑡2))
, 𝑞(𝑡) =

(𝑡2 − 𝑡 + 1)

1 + 𝑡5(1 + 𝑡2)
 

𝑓(𝑢) = 𝑐𝑜𝑠5(𝑢2), 𝑔(𝑢) = 𝑠𝑖𝑛3(𝑢2), (𝑡, 𝑢) ∈ [𝑡0, +∞) × ℝ. 

1- We choose  and   because they satisfying the conditions of theorem (3.1), and hence we have from the 

same theorem that 

𝑚𝑎𝑥{|𝑐𝑜𝑠5(9) − 𝑐𝑜𝑠5(25)|, |𝑠𝑖𝑛3(9) − 𝑠𝑖𝑛3(25)|} 

= 𝑚𝑎𝑥{|0.328|, |−0.071|} 

= 0.257 ≤ 30|3 − 5| ≤ 30|−2| ≤ 60 

19 < 48 
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2- ∫ {|
1+𝑠

1+𝑠3(𝑙𝑛(1+𝑠2))
|

+∞

0
, |

(𝑠2−𝑠+1)

1+𝑠5(1+𝑠2)
|}𝑑𝑠 < ∞ 

 

MATLAB software is used again to solve the previous equation  

  
         3-   0 < 𝑁 < (1 − 2𝑎0)𝑀 

𝑎0 <
1

3
<

1

2
 

0 < 2(1 −
2

3
)9 

0 < 2
9

3
 

0 < 2 < 3    

4)  |𝑎(𝑡)| ≤ 𝑎0        𝑡 ≥ 2       

|
𝑡3𝑐𝑜𝑠(𝑡5)

1 + 3𝑡3
| ≤

1

3
 

         

Then the equation has a bounded non-oscillatory solution.  
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